

6th East African Health and Scientific Conference

Mapping hotspots of chikungunya and dengue transmission in Northeastern Tanzania: Using disease exposure and vector data

<u>**Debora C. Kajeguka**</u>, Robert D Kaaya, Rachelle Desrochers, Mahmood Iranpour, Reginald A. Kavishe, Michael Alifrangis, Karin L. Schiøler, L. Robbin Lindsay, Franklin W. Mosha, Manisha A. Kulkarni

Background

- Dengue and chikungunya fever are mosquito-borne viral diseases that are public health problems in Tanzania and throughout the tropical and subtropical regions of the world
- Seasonal variations in transmission of these viruses have been suggested owing to the ecology of their mosquito vector species
 - But little is known about the epidemiology of the diseases in Northeastern Tanzania, where disease activity has been increasingly recognized in recent years
- To address this gap, seasonal community-based crosssectional surveys were undertaken to identify potential hotspots of transmission in Hai district

Methodology, Hai District, Northern Tanzania

• Entomological data

Methodology

- Serological measures: Using enzyme-linked immunosorbent assays (ELISA)
- Individual Ae. *aegypti* mosquitoes were tested for dengue and chikungunya virus using the real-time RT-PCR method described by (Pongsiri et al. 2012)
- All participants were geo-referenced to the household level using a global positioning system (GPS)
- Clusters of human dengue and chikungunya exposure and Aedes mosquitoes in the wet and dry seasons were detected using SaTScan
- All significant clusters (with p<0.05) were mapped using ArcGIS

Aedes collections, household locations of chikungunya and dengue seropositive and seronegative cases

Seroprevalence of recent dengue and chikungunya virus infection

Variable		Total (N)	Dengue IgM % pos (n)	Chikungunya IgM % pos (n)
Sex	Male	168	4.2 (7)	10.0 (17)
	Female	430	3.5 (15)	11.9 (51)
Age in years	≤15	194	1.5 (3)	11.9 (23)
	>15	404	4.7 (19)	11.1 (45)
Level of schooling	No Formal	125	2.4 (3)	8.8 (11)
	Pre-school	56	1.8 (1)	14.3 (8)
	Primary	366	4.9 (18)	12.0 (44)
	Secondary & higher	51	0.0 (0)	9.8 (5)
Season				
	Wet	299	4.7 (14)	11.7 (35)
	Dry	299	2.7 (8)	11.0 (33)
Village/city	B-ng'ombe			
	Magadini	67	4.5 (3)	9.0 (6)
	Rundugai	124	4.8 (6)	14.5 (18)
	Nshara	197	4.1 (8)	13.2 (26)
	Kware	61	0.0 (0)	6.6 (4)
		149	3.4 (5)	9.4 (14)
	Total	598	3.7 (22)	11.4 (68)

Results: MAP-A: Chikungunya clusters in wet season

- Spatial analysis of chikungunya cases detected one significant cluster in the wet season
 - While no significant clustering was observed in the dry season (p< 0.05)
- A large, widely dispersed cluster of chikungunya cases was detected spanning Rundugai village and parts of Magadini village with
- RR = 2.58, p= 0.01
- This cluster had a radius of almost 19km and contained 20% of all seropositive individuals

Results: MAP-C: clusters of Aedes mosquito in dry season

 A small cluster was also detected in Kware

Discussion

- We detected a large diffuse cluster of chikungunya cases in rural lowland villages
 - Coincided with clustering of Ae. aegypti mosquitoes
 - This tends to support the hypothesis of local chikungunya transmission in this area
- Aedes mosquitoes were detected in the wet and dry seasons, highlighting the need to identify the importance of natural and peri-domestic breeding sites in order to inform appropriate risk messaging and vector control strategies. The detection of a chikungunya hotspot in rural lowland villages is important for the diagnosis of febrile illness in this population.

Discussion

- Aedes mosquitoes were detected in the wet and dry seasons
 - Highlighting the need to identify the importance of natural and peri-domestic breeding sites in order to inform appropriate risk messaging and vector control strategies
- The detection of a chikungunya hotspot in rural lowland villages is important for the diagnosis of febrile illness in this population

Conclusion

 Identification of locations where diseases are clustered is useful for early evaluation of case distribution to provide an assessment of risk at a small geographical scale for targeted control

ACKNOWLEDGEMENT

International Development Research Centre Centre de recherches pour le développement international

